Microscience Manual

Chemistry Students' Manual

Second Guyana Version Adaptation of Teaching and Learning Materials on Microscience Experiments

Funded by UNESCO in collaboration with the Ministry of Education and the University of Guyana

Updated on: April 10, 2015

Contents

Participants	3
A Message from the Minister of Education	4
Introduction to the first Guyana version adaptation of UNESCO teaching and learning materials on a science experiments	micro 5
EXPERIMENT 1 – ELECTROYSIS OF WATER	6
EXPERIMENT 2 - THE ELECTROLYSIS OF A COPPER (II) CHLORIDE SOLUTION	8
EXPERIMENT 3 - THE REACTION OF COPPER WITH OXYGEN	11
EXPERIMENT 4 – THE REACTION OF SULPUR WITH OXYGEN	13
EXPERIMENT 5 – THE REACTION OF MAGNESIUM WITH OXYGEN	15
EXPERIMENT 6 – DECOMPOSITION OF COPPER CARBONATE	17
EXPERIMENT 7 – DECOMPOSITION OF AMMONIUM CARBONATE	19
EXPERIMENT 8 – REDUCTION OF COPPER (II) OXIDE	21
EXPERIMENT 9 – ACID/BASE TITRATION – AN INTRODUCTION	23
EXPERIMENT 10 – THE EFFECT OF DILUTE ACIDS AND BASES ON INDICATORS	25
EXPERIMENT 11 – REACTIONS WITH ACIDS AND SODIUM HYDROXIDE	27
EXPERIMENT 12 – PREPARATION OFA SALT: THE REACTION BETWEEN AN ACID AND A METAL CARBONATE	29
EXPERIMENT 13 - PREPARATION OF A SALT: THE REACTION OF A METAL WITH AN ACID	31
EXPERIMENT 14 - RATES OF REACTION - THE EFFECT OF CONCENTRATION	34
EXPERIMENT 15 - ENTHALPY CHANGE FOR THE REACTIONS OF ACIDS WITH A STRONG BASE	37
EXPERIMENT 16 - THE ZINC/COPPER CELL	39
EXPERIMENT 17 - CONCENTRATION AND AMOUNT OF SUBSTANCE IN SOLUTION	41
EXPERIMENT 18 - ACID BASE TITRATION – DETERMINING THE CONCENTRATION OF AN ACID	42
EXPERIMENT 19 - PREPARATION AND PROPERTIES OF SULPHUR DIOXIDE	45
EXPERIMENT 20 - AIR POLLUTION BY SULPHUR DIOXIDE	47
EXPERIMENT 20 - AIR POLLUTION BY SULPHUR DIOXIDE	49
PART 2 – The Function of a Chimney in Dispersing Air Pollutants	49
EXPERIMENT 20 - AIR POLLUTION BY SULPHUR DIOXIDE	50
PART 3 – The Elimination of Emission by an Absorbing Substance	50
EXPERIMENT 21 - ORGANIC CHEMISTRY – ESTERS	52
EXPERIMENT 22 - ORGANIC CHEMISTRY – SATURATED AND UNSATURATED HYDROCARBONS	54

The Ministry of Education wishes to acknowledge the work of the consultations on selecting the Microscience Experiments for Biology, Chemistry and Physics which are relevant to the national curriculum.

Participants

Name	Institution
Mr. Gregory Blyden	Faculty of Natural Sciences - University of Guyana
Mr. Mohandatt Goolsarran	Ministry of Education - NCERD
Mr. Navindra Hardyal	Queens College
Mr. Sirpaul Jaikishun	Faculty of Natural Sciences - University of Guyana
Ms. Petal Jetoo	Ministry of Education - NCERD
Ms. Noella Joseph	Cyril Potter College of Education
Ms. Samantha Joseph	Faculty of Natural Sciences - University of Guyana
Mr. Azad Khan	School of Education and Humanities - University of Guyana
Mr. Patrick Ketwaru	Faculty of Natural Sciences - University of Guyana
Professor Lloyd Kunar	Physics Department - University of Guyana
Mr. Marvin Lee	Queens College
Mr. Andrew Mancey	School of the Nations
Mr. Gary Mendonca	Faculty of Natural Sciences – University of Guyana
M. Kamini Ramrattan	Richard Ishmael Secondary School
Ms. Wendel Roberts	Ministry of Education – NCERD
Ms. Medeba Uzzi	Faculty of Natural Sciences – University of Guyana

A Message from the Minister of Education

'The steady decline of enrolment of young people in science is cause for concern, and it is in this endeavour that UNESCO's work in Science Education aims to make a difference. In a world that is increasingly shaped by science and technology, the team recognizes this and has made it its mission to not only spread education but to make an interest in the Sciences a prominent and lasting feature wherever it is offered'.(UNESCO, 2011). One approach used by UNESCO is its **Global Micro-science Experiments Project** which provides developed and developing countries alike with new teaching tools. This Global Micro-science Experiments Project is a hands-on science education project that gives primary and secondary school students as well as university students the opportunity to conduct practical work in physics, chemistry and biology, using kits that come with booklets. The project thus contributes to capacity building, in areas where limited/no laboratory facilities are available. The experimental techniques that can be covered on a micro-scale include everything from separating the components of mixtures to measuring rates of reactions between chemicals.

The Ministry of Education, Guyana collaborated with UNESCO to initiate the Global Microscience Experiments project as a pilot for fifteen secondary schools in 2012. Ninety-five percent (95%) of secondary schools are now equipped with the micro-science kits and supporting manuals. This project was embraced to support the Ministry's drive to improve enrolment in the single sciences. A twenty percent (20%) increase in student enrolment was recorded since the introduction of this programme. We remain committed to transforming Guyana through Science and Technology in Education.

Guyana now leads UNESCO's Global Microscience Experiments Project in the Caribbean and is willing to partner CXC territories in providing assistance.

It is my sincere hope that this manual will be used to encourage interactive learning which fosters the development of critical thinking skills by students.

Hon. Dr. Priya D. Manickchand Minister of Education Guyana April 2015

Introduction to the first Guyana version adaptation of UNESCO teaching and learning materials on micro science experiments

The of this document of contents are recommended by the participants UNESCO/Kingston/Ministry of Education, NCERD consultations on Micro-Science Experiments held in Georgetown (Guyana) on 27-30 June, 2011. The present materials correspond fully to the existing National Curriculum for teaching basic sciences at the different levels. The materials were selected by the participants of the working consultations. The participants worked with teaching and learning packages on micro-science experiments which are available on UNESCO's website and are free for all types of adaptations and modifications. The different types of micro-science kits donated by UNESCO/Kingston Office to Guyana can be used in practical classes. The experiments are classified according to grades and some were given first priority (refer to appendix 1). The 'priority one' experiments are recommended for the pilot of the microscience experiments. It is very clear that, new experiments can be developed and tested using the same kit, as proposed by the participants of the working consultations which included curriculum development specialists. Developing new materials can be recommended, as a second stage of the project development. It is noted that the micro-science experiments, as a new methodology for hands on laboratory work by students, can work in conjunction with macro-science experiments. Furthermore the micro-science kits can be used by teachers for demonstration purposes. We hope, that the Science Teachers in Guyana will find the microscience experiments methodology and teaching and learning materials, interesting and of great value for the enhancement of science education.

Participants of the working consultations

May 2012

EXPERIMENT 1 – ELECTROYSIS OF WATER

CSEC OBJECTIVE: Section A9, 9.6 – 9.8

9.6 - Predict the electrode to which an ion will drift

9.8 – discuss electrolysis of certain substances

	sample vial. Repeat this procedure for electrode 2. Return any remaining solution in
	the propette to the small sample vial. Use tap water to thoroughly rinse your
	fingers free of the sodium hydroxide solution.
7.	Connect the end of the long black wire from the current indicator to the negative (-)
	terminal of the battery. Connect the end of the short black wire to electrode 1.
8.	Connect the one end of the red wire to the positive (+) terminal of the battery.
	Connect the other end of the red wire to electrode 2. (See Question 1)
9.	Disconnect the current indicator from the circuit. Reconnect electrode 1 directly to
	the negative (-) terminal of the battery with the loose red wire supplied. (See
	Question 3)
10.	Let the substance produced in electrode 1 be called substance A. Let the substance
	produced in electrode 2 be called substance B. (Periodically tap each electrode
	with your finger, to dislodge substances A and B which may build up in localised
	areas.)
11.	When electrode 1 is full of substance A (at the end of the last pen marking on the
	electrode), disconnect the battery from the circuit. This may take approximately 10
	minutes (or longer if you are using two 1.5 V cells). (See Question 4)
12.	Light the microburner. Carefully remove electrode 1 from the water, sealing the
	open end with your finger when it is out of the water. Bring electrode 1 very close
	to the flame of the microburner. Do not burn yourself or the straw!
13.	Remove your finger from the opening, allowing substance A to escape. When you
	have observed what happens, thoroughly rinse your fingers with tap water. (See
	Question 5)
	Rinse the vial out with clean water.
QUEST	IONS
Q 1.	What effect is there on the current indicator when the battery is connected to the
	electrodes ?
Q 2.	What is the reason for your observation in question 1?
Q 3.	What do you observe at the different electrodes ?
Q 4.	When electrode 1 is full of substance A, how much of substance B is there in
	electrode 2 ?
Q 5.	What happens when substance A is exposed to the flame ?
Q 6.	What is the name given to substance A ?
Q 7.	What is the name of substance B ?
Q 8.	What test would you do to prove substance B is what you say it is ?
Q 9.	Why was a greater volume of substance A produced than of substance B ?
Q10.	Write a summary of what happens when water is electrolysed.
Q11.	From question 10, would you say that tap water is a compound, an element or a
	mixture? Explain your answer.

EXPERIMENT 2 - THE ELECTROLYSIS OF A COPPER (II) CHLORIDE SOLUTION

CSEC OBJECTIVE: Section A9, 9.6 – 9.8

9.6 - Predict the electrode to which an ion will drift

9.8 – discuss electrolysis of certain substances

	angle against the wall of the large well.
	6. Fold one of the strips of aluminium foil about three times to form a narrow but
	sturdy connector as shown in the diagram above. Fold the other aluminium foil
	strip in the same way.
	7. Attach each one of the aluminium foil connectors to separate terminals of the
	battery. <i>Prestik</i> can be used to reinforce the connections to the battery.
	Alternatively, small crocodile clips can be used to make sure that the foil strips are
	properly connected to the battery terminals.
	8. Connect the battery to the electrodes by attaching the aluminium foil strips from
	the terminals of the battery to separate carbon electrodes, as shown in the
	diagram. (See Question 1)
Note	mall, plastic-coated paper clips can be used to attach the ends of each foil strip to the
1.016	electrodes. This helps to prevent the foil from slipping off the electrodes during
	electrolysis.
l	9. After about one or two minutes, lift the comboplate [®] gently upwards towards your
100	chin. (See Question 2)
CAUTION	Do not inhale the fumes directly!
	10. Moisten a small piece of indicator paper (either litmus or universal indicator paper
	in the kit) with tap water.
	11. Hold one corner of the paper at the electrode where there is bubbling taking place.
	(See Question 3)
	12. Look closely at the other electrode in the solution and observe any changes taking
	place. (See Question 4)
	13. Allow the electrolysis to continue for another 5 to 10 minutes. Disconnect the foil
	from the electrode where no bubbling was observed.
	14. Lift the electrode out of the copper (II) chloride solution and examine its
	appearance. (See Question 5)
	Clean all apparatus thoroughly.
	LUESTIONS
	21. What do you notice as soon as the battery has been connected to the electrodes?
	22. Describe the odour coming from the well.
	25. What happens to the section of the numus paper that is new close to the electrode
	at which bubbling takes place:
	Describe the change in appearance of the other electrode (i.e. the electrode where
	no hubbling occurs) is this electrode connected to the positive or negative
	terminal of the hattery?
	5. What has happened to the electrode after the electrolysis of the copper(II)
	chloride solution has been allowed to continue for 5 to 10 more minutes?
	06. What was happening at the electrode where you saw bubbling taking place? Use
	your answers to Questions 2 and 3 to support your explanation.
	Q7. What was happening at the electrode where no bubbles were observed?
	28. Describe the appearance of the copper(II) chloride solution before electrolysis
	took place. Do the products formed at each electrode have the same properties as
	the original solution? Explain your answer by referring to observations made
	during the experiment.
	29. From your answer to Question 8, describe the effect of an electric current on a
	copper(II) chloride solution.

Q10.	The carbon rods or electrodes are required for carrying current into and out of the
	copper(II) chloride solution. Each electrode has a special name. The electrode
	connected to the positive terminal of the battery is called the anode, while the
	electrode connected to the negative terminal of the battery is called the cathode.
i.	At which electrode did chlorine gas form? (See your answer to Question 3)
ii.	At which electrode did copper metal deposit? (See your answer to Question 4)
Q11.	An electric current can only flow if the solution contains charged particles that are
	able to move through the solution.
	Write down the formulae of the charged particles which exist in a copper(II)
	chloride solution. Name the charged particles.
Q12.	Recall what you observed at the anode. Which charged particles in the copper(II)
	chloride solution moved towards the anode?
Q13.	Which charged particles moved towards the cathode? Explain by referring to the
	product you observed at this electrode.
Q14.	Write down a balanced equation to show the reaction taking place in the well
	during electrolysis. What type of reaction is this? Explain your answer with
	reference to the observations made at each electrode.
Q15.	What kind of half-reaction occurs at the anode? Write an equation for this half-
	reaction. (See your answers to Q10i and Q14)
Q16.	What kind of half-reaction occurs at the cathode? Write an equation for this half-
	reaction. (See your answers to Q10ii and Q14)

EXPERIMENT 3 - THE REACTION OF COPPER WITH OXYGEN

CSEC OBJECTIVE: Section C2 - 2.1 2.1 Discuss the reactivity of metals Grade Level - 10

REQUIREMENTS **Apparatus:** 1 x comboplate[®]; 1 x 2 ml syringe; 1 x thin stemmed propette; 2 x plastic microspatulas; 1 x lid 1; 1 x lid 2; 1 x glass tube; 2 x silicone tubes (4 cm x 4 mm); 1 x microburner; 1 x box of matches. **Chemicals:** Manganese dioxide powder (MnO2(s)); Fresh hydrogen peroxide solution (H2O2(aq)) [10 %]; Methylated spirits; Copper powder (Cu(s)); Tap water. Note The hydrogen peroxide solution should be fresh, otherwise the results will not be as described below. The methylated spirits used in the microburner is poisonous. Do not inhale the vapour or AUTION drink the liquid. If any hydrogen peroxide is spilt on the skin, thoroughly rinse the affected area with water. silicone tube connectors svring glass combustion tube 0,5 ml 10% H2O2(aq) Cu(s) silicone tube silicone tube TO MANUTATIO tap water level microspatula of MnO₂(s) F6 F1 PROCEDURE 1. Add 1 level spatula of manganese dioxide powder into well F6, using the spooned end of a microspatula. 2. Fill ¾ of well F1 with tap water. Seal well F1 with lid 2, making sure the vent hole faces inwards. Seal well F6 with lid 1. 3. Connect one silicone tube to the tube connector on lid 1. Connect the other silicone tube to the tube connector on lid 2. 4. Hold the glass tube in a horizontal position. Use the narrow end of a clean microspatula to place a small quantity of copper powder in the centre of the glass tube. (See Question 1) 5. Keep the glass tube in a horizontal position and attach one end to the silicone tube on lid 1. Connect the other end to the silicone tube on lid 2.

Note	Keep the glass tube horizontal at all times otherwise the copper powder might spill into		
	well F6.		
	6. Fill the syringe with 0,5 ml of 10% H2O2(aq). Fit the nozzle of the syringe into the		
	syringe inlet on lid 1 in well F6.		
	7. Light the microburner and place it on one side away from the comboplate [®] .		
	8. Add the 0,5 ml of H2O2(aq) very slowly from the syringe into well F6. (See		
	Question 2)		
	<i>9.</i> When a few bubbles have come through the water in well F1, bring the flame of		
	the microburner to the middle of the glass tube where the copper powder has		
	been placed. Observe what happens in the glass tube while heating. (See Question		
	4)		
Note	Keep the flame of the microburner directly beneath the copper in the tube. Do not move		
NOLE	the microburner from side to side.		
	10. Stop heating the copper after 5 minutes, or after the copper has changed in		
	appearance. Blow out the microburner flame.		
	11. If you see water being sucked back from well F1 into the glass tube, disconnect lid		
	2 from well F1.		
	Thoroughly clean the comboplate [®] as manganese dioxide leaves a residue in the well.		
	QUESTIONS		
	Q1. Describe the appearance of the copper powder.		
	Q2. What happens when 10% hydrogen peroxide solution is added to well F6?		
	Q3. Why was it necessary to wait for the first few bubbles to come through before		
	heating the glass tube ?		
	Q4. What is happening to the copper powder during heating ? Describe any other		
	changes in the glass tube.		
	Q5. From your observations of the powder in the glass tube, would you say a chemical		
	reaction occurred ? Explain your answer.		
	Q6. What product is formed when copper burns in oxygen ?		
	Q7. Write a word equation for the combustion of copper in oxygen.		
	Q8. Write a balanced chemical equation for the combustion of copper in oxygen.		
	Q9. How would you try to prove that the product formed in this experiment is indeed		
	copper(II) oxide ? Suggest an experimental set-up to perform this experiment.		

EXPERIMENT 4 - THE REACTION OF SULPUR WITH OXYGEN

CSEC OBJECTIVE: Section C5 - 5.1

5.1 Describe the physical and chemical properties of non-metals Grade Level - 10

	microspatula to place a small quantity of sulphur powder in the centre of the glass		
	10 Keep the glass tube in a horizontal position and attach one end of the glass tube to		
	the silicone tube on lid 1.		
	Connect the other end of the glass tube to the silicone tube on lid 2.		
Note	Do not move well F1.		
	11. Light the microburner and move it away from the comboplate [®] .		
	12. Slowly add about 0,4 ml of the 10% H2O2(aq) from the syringe into well F1. Wait		
	for a steady stream of bubbles to appear in the water in well F6, then begin heating		
	the sulphur powder in the glass tube with the microburner. (See Question 2)		
Note	Keep the flame of the microburner directly beneath the sulphur in the tube. Do not move		
1-016	the flame from side to side.		
	13. If the bubbles stop flowing in F6, add more of the H2O2(aq) dropwise to F1 while		
	continuing to heat the sulphur.		
	14. After all the sulphur has burned, blow out the microburner flame. Hold the		
UTIO	comboplate [®] up and wave your hand over well F6 towards your nose.		
CAUTION	Do not inhale the fumes directly! (See Question 3)		
	15. If you see water being sucked back from F6 into the glass tube, disconnect lid 2		
	from F6.		
	Clean all apparatus thoroughly.		
	QUESTIONS		
	Q1 Write down the colour of the indicator in the tap water. Describe the water as		
	acidic, basic or neutral.		
	Q2. What do you observe in the glass tube while heating the sulphur ?		
	Q3. Describe the smell that comes from the vent in well F6.		
	Q4. What is the colour of the indicator solution in well F6 after the experiment ?		
	Q5. Why did the indicator change colour ?		
	Q6. Write a word equation for the combustion of sulphur in oxygen.		
	Q7. Some carbon fuels, such as coal, contain sulphur as an impurity. When these fuels		
	burn they form sulphur dioxide. Using the observations in the above experiment		
	with the universal indicator, explain how the burning of sulphur in the environment		
	can contribute to the problem of acid rain.		

EXPERIMENT 5 – THE REACTION OF MAGNESIUM WITH OXYGEN

CSEC OBJECTIVE: Section C 1, 1.1

1.1 Describe the physical and chemical properties of metals

Note	 REQUIREMENTS Apparatus: 1 x comboplate®; 1 x 2 ml syringe; 1 x thin stemmed propette; 2 x plastic microspatulas; 1 x lid 1; 1 x lid 2; 1 x glass tube; 2 x silicone tubes (4 cm x 4 mm); 1 x microburner; 1 x box of matches. Chemicals: Manganese dioxide powder (MnO2(s)); Fresh hydrogen peroxide solution (H2O2(aq)) [10 %]; Methylated spirits; Universal indicator solution; Magnesium powder (Mg(s)); Tap water. The hydrogen peroxide solution should be fresh, otherwise the results will not be as described below.
	syringe inlet tube connectors UD 1 $UD 2$ $UD 1$ $UD 2UD 2UD 1$ $UD 2UD 1$ $UD 2UD 2$
	PROCEDURE
	1. Use the spooned end of a plastic microspatula to place one level spatula of
	manganese dioxide powder into well F1.
	2. Push lid 1 securely into well F1. Attach one of the silicone tubes to the tube
	connector on the lid.
	 Fill % of well F6 with tap water using a propette. Bush lid 2 securely into well F6. Make sure that the yent in the lid faces inwards.
	4. Fushing 2 securely into well F0. Make sure that the vent in the numbers inwards. Attach the other silicone tube to the tube connector on lid 2
	5. Fill the syringe with 1 ml of the 10% hydrogen peroxide solution. Fit the syringe into
	the syringe inlet on lid 1 in well F1.
	6. Hold the glass tube in a horizontal position. Use the narrow end of a clean
	microspatula to place a small quantity of magnesium powder in the centre of the
	glass tube.
	7. Keep the glass tube in a horizontal position and attach one end to the silicone tube
-1	Do not move the glass tube from the horizontal position as some of the magnesium
Note	powder may fall into well F1.

	8.	Light the microburner and place it on one side.
	9.	Slowly add about 0,4 ml of the 10% H2O2(aq) from the syringe into well F1. Wait for
		a steady stream of bubbles to appear in the water in well F6, then begin heating the
		magnesium powder in the glass tube with the microburner.
Note	Keep th	ne flame of the microburner directly beneath the magnesium in the tube. Do not
,	move t	he microburner from side to side.
	10.	When the bubbles stop flowing in well F6, add the rest of the H2O2(aq) very slowly
		to well F1 while continuing to heat the magnesium. Observe what happens in the
		glass tube while heating. (See Question 2)
	11.	After the magnesium has changed in appearance, blow out the microburner flame.
	12.	If you see water being sucked back from well F6 into the glass tube, disconnect lid 2
		from well F6.
	13.	When the glass tube has cooled, remove it from the set-up. Tap the tube gently in
		well E3 to dislodge as much of the solid product in the tube as possible.
	14.	Add 10 drops of water to well E3 and stir the solid vigorously in the water.
	15.	Use a clean propette to add one drop of universal indicator solution to well E3. (See
		Question 4)
	16.	Leave the comboplate [®] to stand for about $5 - 7$ minutes. Observe the colour of the
		indicator in well E3 after this time.
		Rinse the comboplate [®] and shake dry.
	0	Rinse the glass tube and scrape out any remaining residue with a toothpick.
	QUEST	IONS
	Q1.	Describe the appearance of the magnesium powder.
	Q2.	What did you observe in the glass tube while heating the magnesium in oxygen ?
	Q3.	what do you see inside the glass tube after heating ? (Note: It is usual for a black
		residue to form at the bottom of the glass tube where the microburner was held,
	04	What is the colour of the universal indicator solution in well E2.2
	Q4. 05	What is the colour of the indicator solution in well 52 after about 5 minutes 2
	Q3. 06	Is the solution of the product acidic or basic 2
	Q0. 07	What product is formed when magnesium hurns in ovvgen 2
	08	What product is formed when magnesium burns in oxygen :
	09	Write a word equation for the combustion of magnesium in oxygen
	Q10.	Write a balanced chemical equation for the combustion of magnesium in oxygen.

EXPERIMENT 6 - DECOMPOSITION OF COPPER CARBONATE

CSEC OBJECTIVE: Section C 1, 1.2

1.2 Describe the reactions of metal oxides, hydroxides, nitrates and carbonates Grade Level - 10

	microburner.		
	7. Light the microburner. Hold the flame beneath the fusion tube and start heating,		
	waving the flame gently below the CuCO3(s).		
	Avoid the CuCO3 moving into the silicone tube by ensuring that there is space between		
Note	the top wall of the fusion tube and the CuCO3(s) powder (as shown in the diagram). Be		
,	careful when heating and stop heating if CuCO3(s) powder moves towards the mouth of		
	the fusion tube. Tap the CuCO3(s) back towards the closed end gently.		
	8. Continue heating this way during the next steps. (See Question 3)		
	9. Continue heating until there are no more bubbles coming out in well F4. (See		
	Question 4)		
	10. Discontinue heating and wait for the fusion tube to cool.		
	The limewater will rise up the silicone tube as cooling takes place. Allow this to happen.		
Note	However, make sure that the liquid does not get into the fusion tube by disconnecting the		
	fusion tube from the silicone tube as soon as the liquid is close to the mouth of the fusion		
	tube.		
	11. Allow the liquid in the silicone tube to go back into well F4. (See Question 5)		
	12. When the fusion tube has cooled, tap some of the remaining solid into well A2 and		
	add a drop of 1 M sulphuric acid. (See Question 7)		
	Clean all apparatus thoroughly.		
	QUESTIONS		
	Q1. What colour is CuCO3(s)?		
	Q2. What happens in well A1? Explain your observation.		
	Q3. What do you observe in well F4?		
	Q4. What colour is the solid remaining in the fusion tube?		
	Q5. What happens in well F4?		
	Q6. What is responsible for your observation in well F4?		
	Q7. What happens in well A2?		
	Q8. What is the name of the solid remaining in the fusion tube after heating?		
	Q9. Explain why your observation in Q7 is different from your observation in Q2.		
	Q10. Write a word equation for the reaction that took place in this experiment. Beneath		
	each substance write the colour.		
	Q11. Write a chemical formula equation for the reaction in Q10 above.		

EXPERIMENT 7 – DECOMPOSITION OF AMMONIUM CARBONATE

CSEC OBJECTIVE: Section C1, 1.2

1.2 Describe the reactions of metal oxides, hydroxides, nitrates and carbonates Grade Level - 10

	6)
6.	Disconnect the apparatus. Cautiously smell the solution in well F4 and the open
	fusion tube. (See Question 8)
	Clean all apparatus thoroughly.
QUEST	IONS
Q1.	What colour is the universal indicator before adding it to the water?
Q2.	What colour is the universal indicator after adding it to the water?
Q3.	What happens in well F4 as heating is continued?
Q4.	What happens in the fusion tube as heating is continued?
Q5.	What colour is the mixture in well F4?
Q6.	Is the mixture in well F4 acidic or basic after heating?
Q7.	Why did the mixture in well F4 go basic?
Q8.	What do you smell?
Q9.	What remains in the fusion tube?
Q10.	Write a formula equation for the reaction in this experiment.

EXPERIMENT 8 - REDUCTION OF COPPER (II) OXIDE

Section A8. Objective 8.4

8.4 Identify oxidation and reduction reactions including reactions at electrodes Grade Level - 10

	DECUMPERATING
	REQUIREMENTS
	Apparatus: 1 x comboplate [®] ; 1 x 2 ml syringe; 1 x glass tube (6 cm x 4 mm); 1 x lid 1; 1 x lid
	2; 2 x plastic microspatulas; 1 x propette; 2 x silicone tubes (4 cm x 4 mm); 1 x
	microburner;
	1 x box of matches.
	Chemicals: Hydrochloric acid (HCl(ag)) [5.5 M]: Zinc powder (Zn(s)): Copper(II) oxide
	nowder ($CuO(s)$): Methylated spirits
ALITION	
CAUTION	1. The methylated enjuite used in the microhymey is released. Do not inhole the
	1. The methylated spirits used in the microburner is poisonous. Do not innale the
	vapour or drink the liquid.
	2. If any acid is split on the skin, thoroughly rinse the affected area with water.
	Svillage liket the connector
	El T
	glass combustion tube
	0.5 ml of 5.5 M HCl(aq)
	silicone tube silicone tube
	(dus des)
	of Zn(s)
	F1 F0
	PROCEDURE
	1. Use the spooned end of a clean microspatula to add one level spatula of zinc
	powder to well F1.
	2. Fill b of well F6 with tap water from a propette.
	3. Seal well F1 with lid 1. Seal well F6 with lid 2 so that the vent hole faces outwards.
	4. Connect one end of a silicone tube to the tube connector on lid 1. Connect one
	end of the other silicone tube to the tube connector on lid 2.
	5. Hold the glass tube in a horizontal position. Use the narrow end of a clean
	microsnatula to place a small quantity of conner(II) oxide nowder in the centre of
	the dass tube
	ute glass tube.
	b. Keep the glass tube norizontal and attach one end to the silicone tube on lid 1.
	Connect the other end to the silicone tube on lid 2.
	Keep the glass tube horizontal at all times otherwise the powder might spill into wells F1
	or F6.

- 1	7. Fill the syringe with 0.5 ml of 5.5 M HCl(ag). Fit the nozzle of the syringe into the			
Note	svringe inlet on lid 1 in well F1.			
	8. Light the microburner and place it on one side away from the comboplate [®] .			
	9. Add the HCl(ag) very slowly from the syringe into well F1. (See Question 1)			
	10. When a few bubbles have come through the water in well F6, bring the flame of			
	the microburner to the middle of the glass tube where the CuO(s) has been placed.			
	Hold the microburner in this position			
	Do not bring the flame of the microburner near the silicone tubes (as they will melt) or			
	the vent of well F1 (as hydrogen is explosive).			
UTIO	11. Stop heating the CuO(s) after about 2 minutes or after it has changed in			
CAUTION	appearance. Blow out the microburner flame (See Questions 3 and 4)			
	12. If you see water being sucked back from well F6 into the glass tube, disconnect lid			
	2 from well F6.			
	Remove the glass tube from the set-up when it has cooled.			
	Rinse the comboplate [®] and svringe thoroughly.			
	OUESTIONS			
	Q1. What happens when 5.5 M HCl(ag) is added to well F1?			
	Q2. Why was it necessary to wait for the first few bubbles to come through before			
	heating the glass tube?			
	Q3. What has happened to the CuO(s)?			
	Q4. Describe any other changes in the glass tube.			
	Q4. Describe any other changes in the glass tube.Q5. From your observations of the solid in the glass tube, would you say a chemical			
	 Q4. Describe any other changes in the glass tube. Q5. From your observations of the solid in the glass tube, would you say a chemical reaction occurred? Explain your answer. 			
	 Q4. Describe any other changes in the glass tube. Q5. From your observations of the solid in the glass tube, would you say a chemical reaction occurred? Explain your answer. Q6. What do you think the products of this reaction are? 			
	 Q4. Describe any other changes in the glass tube. Q5. From your observations of the solid in the glass tube, would you say a chemical reaction occurred? Explain your answer. Q6. What do you think the products of this reaction are? Q7. Write down the equation for the chemical reaction in which hydrogen was formed, 			
	 Q4. Describe any other changes in the glass tube. Q5. From your observations of the solid in the glass tube, would you say a chemical reaction occurred? Explain your answer. Q6. What do you think the products of this reaction are? Q7. Write down the equation for the chemical reaction in which hydrogen was formed, starting with Zn(s) and HCl(aq). 			
	 Q4. Describe any other changes in the glass tube. Q5. From your observations of the solid in the glass tube, would you say a chemical reaction occurred? Explain your answer. Q6. What do you think the products of this reaction are? Q7. Write down the equation for the chemical reaction in which hydrogen was formed, starting with Zn(s) and HCl(aq). Q8. How could we test if hydrogen gas (H2(g)) is really being produced? 			
	 Q4. Describe any other changes in the glass tube. Q5. From your observations of the solid in the glass tube, would you say a chemical reaction occurred? Explain your answer. Q6. What do you think the products of this reaction are? Q7. Write down the equation for the chemical reaction in which hydrogen was formed, starting with Zn(s) and HCl(aq). Q8. How could we test if hydrogen gas (H2(g)) is really being produced? Q9. Write down the chemical equation for the reaction of copper oxide (CuO(s)) which 			
	 Q4. Describe any other changes in the glass tube. Q5. From your observations of the solid in the glass tube, would you say a chemical reaction occurred? Explain your answer. Q6. What do you think the products of this reaction are? Q7. Write down the equation for the chemical reaction in which hydrogen was formed, starting with Zn(s) and HCl(aq). Q8. How could we test if hydrogen gas (H2(g)) is really being produced? Q9. Write down the chemical equation for the reaction of copper oxide (CuO(s)) which you think occurred. 			

EXPERIMENT 9 – ACID/BASE TITRATION – AN INTRODUCTION Section A7. Objective 7.11

7.11 Use results from volumetric analysis to calculate:

(I) The number of reacting moles

(ii) the mole ratio in which reactant combine

	REQUIREMENTS				
	Apparatus: 1 x plastic microspatula; 5 x thin stemmed propettes.				
	Chemicals: Acid A [0.10 M]; Acid B [0.10 M]; Sodium hydroxide solution (NaOH(aq)) [
	M];				
-	Methyl orange indicator; Tap water.				
Note					
CAUTION	The microspatula should be cleaned before each use.				
	If any acid or base is spilt on the skin, thoroughly rinse the affected area with water.				
	PROCEDURE				
	1. Add 5 drops of tap water into well A1.				
	2. Add 1 drop of methyl orange indicator into well A1. (See Question 1)				
	3. Repeat steps 1 and 2 above in well A2 using acid A instead of tap water. (See				
	Question 2)				
	4. Add a sufficient number of drops of sodium hydroxide solution to well A2 to just				
	cause the colour of the solution in well A2 to be the same as that in well A1.				
	Use the plastic microspatula to stir the solution after each drop of sodium				
	hydroxide added.				
	Carefully count the number of drops of sodium hydroxide used. (See Question 3)				
	5. Repeat the titration you did in well A2 two more times, in wells A3 and A4. (See				
	Question 3)				
	6. Repeat steps 3 and 4 above in wells A5, A6 and A7, this time using acid B instead of				
	acid A.				
	7. Carefully count the number of drops of sodium hydroxide used. (See Question 4)				
	Rinse the comboplate [®] with tap water and shake dry.				
	QUESTIONS				
	Q1. Note the colour of the solution in well A1.				
	Q2. Note the colour of the solution in well A2.				
	Q3. Prepare a table like Table 1 below, and enter the number of drops.				

	Acid Used	Number of Drops of Acid A	Number of Drops of NaOH	Average No. Drops NaOl
	A	5 5 5		
Q4.				
Q4.	Prepare a table TABLE 2. Acid Used	like Table 2 below, an Number of Drops of Acid B	nd enter the number Number of Drops of NaOH	of drops. Average No. o Drops of NaOl

EXPERIMENT 10 – THE EFFECT OF DILUTE ACIDS AND BASES ON INDICATORS CSEC OBJECTIVE: Section A7 – 7.2 **7.2 Relate acidity and alkalinity to the pH scale**

REQUIREMENTS
Apparatus: 1 x comboplate [®] : 6 x thin stemmed propettes: a sheet of white paper: pH
indicator strip.
Chemicals: Hydrochloric acid (HC/(ag)) [1 M]: Sulphuric acid (H2SO4(ag)) [1 M]:
Sodium hydroxide solution (NaOH(aq)) [1 M]: Tap water: Universal indicator solution:
Methyl orange solution: Universal indicator paper.
A (HCEXHCEXHCE) X X X X X X X X X X
(1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
c (wath)(wath)(wath)(X)(X)(X)(
$ _{\mathbf{D}} (H_{\mathcal{O}})(H_{\mathcal{O}})(H_{\mathcal{O}})(X)(X)$
- 0000000
PROCEDURE
1. Place the comboplate [®] on the sheet of white paper. <i>(See Question 1)</i>
2. Use a clean propette to place 10 drops of hydrochloric acid (1 M) in each of the wells
A1. A2. and A3.
3. Use a clean propette to place 10 drops of sulphuric acid (1 M) in each of the wells B1,
B2 and B3.
4. Use a clean propette to place 10 drops of sodium hydroxide solution (1 M) in each of
the wells C1. C2 and C3.
5. Use a clean propette to place 10 drops of tap water in each of the wells D1, D2 and
D3.
6. Use a clean propette to place 1 drop of universal indicator solution into each of the
wells A1. B1. C1 and D1. (See Ouestion 2)
7. Use a clean propette to place 1 drop of methyl orange solution into each of the wells
A2. B2. C2 and D2. (See Ouestion 2)
8. Tear two strips of universal indicator paper in half. Fold each half lengthwise, and
place inside wells A3. B3. C3 and D3. (See Questions 2. 3)
Rinse the comboplate [®] and propettes with water.
Rinse the comboplate [®] and propettes with water. QUESTIONS

Q2.	Complete the tal	ble.			
Tak	ole 1				
		In HC/(aq)	In H2 SO4 (aq)	In NaOH(aq)	In Tap Water
	Colour of				
	Universal				
	Indicator				
	Colour of Methyl				
	Orange				
	Colour of				
	Universal				
	Indicator Paper				
Q3.	What did you see	e happen in th	is experiment?		
Q4.	Use the informat	tion on the pH	indicator strip to	classify the subs	tances as "acidic",
	"neutral" or "alk	aline".			
Q5.	. Discuss in your g	roup: What do	o the words "indic	ator" and "to ind	icate" mean in
	everyday use? Tl	nink of some e	veryday examples	s of where we us	e the words.
Q6.	Discuss in your g	roup: Based o	n the experiment	you have comple	eted, formulate a
	definition for an	indicator.			
	An indicator is				

EXPERIMENT 11 – REACTIONS WITH ACIDS AND SODIUM HYDROXIDE CSEC OBJECTIVE: Section A7 – 7.4

7.4 Investigate the reactions with non-oxidizing acids with:

(i) metals, (ii) carbonates, (iii) hydrogen carbonates (iv) bases

QUESTIONS			
Q1.	What chemical substance is in well F1?		
Q2.	What is the colour of the universal indicator in well F1?		
Q3.	Use the pH indicator strip to explain the meaning of the colour of the solution in well		
F1.			
Q4.	Write down the name of the chemical substance, the colour of the universal		
	indicator, and the meaning of the colour in well F2.		
Q5.	What was the colour of the indicator in the dilute sulphuric acid and hydrochloric		
	acid in wells F3 and F4 before you started adding the sodium hydroxide solution?		
	Use the pH indicator strip to explain the meaning of this colour.		
Q6.	What happens when you add the sodium hydroxide to the acidic solutions?		
Q7.	Explain in your own words what this means.		
Q8.	A wasp sting injects an alkaline chemical into the skin. What household chemical		
	could be used to relieve the pain from the wasp sting? Explain why.		
Q9.	A solution of bicarbonate of soda brings some relief when it is applied to a bee sting		
	on the skin. Explain why this is so.		
Q10.	Why does "Milk of Magnesia" relieve indigestion?		