Microscience Manual

Biology Students' Manual

Second Guyana Version Adaptation of Teaching and Learning Materials on Microscience Experiments

Funded by UNESCO in collaboration with the Ministry of Education and the University of Guyana

Updated on: April 10, 2015

Contents

Participants	4
A Message from the Minister of Education	5
Introduction to the first Guyana version adaptation of UNESCO teaching and learning materials on n science experiments	
EXPERIMENT 1 –WHAT MOULDS WILL GROW ON BREAD?	7
EXPERIMENT 2 –WHAT IS THE STRUCTURE OF A CRUSTACEAN?	10
EXPERIMENT 3 –WHAT IS THE STRUCTURE OF A SPIDER?	12
EXPERIMENT 4 – THE ACTION OF AMYLASE ON STARCH	14
EXPERIMENT 5 – THE ACTION OF AMYLASE ON STARCH OVER A PERIOD OF TIME	16
EXPERIMENT 6 – THE EFFECT OF pH ON THE ACTION OF AMYLASE ON STARCH	18
EXPERIMENT 7 – THE EFFECT OF TEMPERATURE ON THE ACTION OF AMYLASE ON STARCH	20
EXPERIMENT 8 – THE ACTION OF THE ENZYME CATALASE ON HYDROGEN PEROXIDE	22
EXPERIMENT 9 – WHAT IS THE EFFECT OF THE ENZYME RENNIN ON MILK?	23
EXPERIMENT 10 – BENEDICTS TEST FOR REDUCING SUGAR	24
EXPERIMENT 11 – DOES THE FOOD WE EAT CONTAIN REDUCING SUGARS?	27
EXPERIMENT 12 – HOW CAN ONE TEST FOR THE PRESENCE OF A NON-REDUCING SUGAR IN FOOD?	30
EXPERIMENT 13 – IODINE TEST FOR STARCH	33
EXPERIMENT 14 – DOES THE FOOD WE EAT CONTAIN STARCH?	34
EXPERIMENT 15 – EMULSION TEST FOR LIPIDS	37
EXPERIMENT 16 –GREASE SPOT TEST FOR LIPIDS	39
EXPERIMENT 17 – DOES THE FOOD WE EAT CONTAIN LIPIDS?	41
EXPERIMENT 18 – BIURET TEST FOR PROTEINS	44
EXPERIMENT 19 – DOES THE FOOD WE EAT CONTAIN PROTEIN?	46
EXPERIMENT 20 – TESTING A LEAF FOR STARCH	49
EXPERIMENT 21 – IS CHLOROPHYLL NECESSARY FOR PHOTOSYNTHESIS?	51
EXPERIMENT 22 – IS LIGHT NEEDED FOR PHOTOSYNTHESIS ?	53
EXPERIMENT 23- IS CARBON DIOXIDE NEEDED FOR PHOTOSYNTHESIS ?	54
EXPERIMENT 24 – IS OXYGEN RELEASED DURING PHOTOSYNTHESIS?	56
EXPERIMENT 25 – THE PRODUCTS OF COMBUSTION	58
EXPERIMENT 26 – IS CARBON DIOXIDE RELEASED DURING RESPIRATION IN GERMINATING SEEDS?	60
EXPERIMENT 27 – WHAT SUBSTANCES ARE FORMED DURING FERMENTATION?	62

EXPERIMENT 28 – IS OXYGEN USED DURING RESPIRATION?	64
EXPERIMENT 29 – IS ENERGY RELEASED DURING RESPIRATION ?	66
EXPERIMENT 30 – DO THE RADICLES OF SEEDS ALWAYS GROW DOWNWARDS?	68
EXPERIMENT 31 – IN WHICH DIRECTION DO YOUNG SHOOTS GROW ?	69
EXPERIMENT 32 – DIFFUSION IN A GAS	70
EXPERIMENT 33 – MORE DIFFUSION IN A GAS	71
EXPERIMENT 34 – DIFFUSION IN A LIQUID	73
EXPERIMENT 35 – DIFFUSION IN A SOLID	74
EXPERIMENT 36 – OBSERVING OSMOSIS USING DIALYSIS TUBING	75
EXPERIMENT 37 – HOW DOES OSMOSIS OCCUR IN LIVING TISSUE?	77
EXPERIMENT 38 – PATH OF WATER THROUGH THE PLANT	79
EXPERIMENT 39 – DOES THE ROOT SYSTEM OF A PLANT PUSH WATER UP THE STEM?	81
EXPERIMENT 40 – IS WATER LOST THROUGH THE AERIAL PARTS OF A PLANT?	82
EXPERIMENT 41 – INVESTIGATING HOW THE LEAVES OF PLANTS LOSE WATER	83
EXPERIMENT 42 – LOSS OF LIQUID WATER FROM PLANTS	85
EXPERIMENT 43 – LOSS OF WATER FROM PLANTS UNDER VARIOUS ENVIRONMENTAL CONDITION	ONS86
EXPERIMENT 44 – FLOWERING PLANTS - SEED STRUCTURE	88
EXPERIMENT 45 – OBSERVING GERMINATION	90
EXPERIMENT 46 –VEGETATIVE STRUCTURES OF ANGIOSPERMS	92
EXPERIMENT 47 – STRUCTURE OF ANGIOSPERM FLOWERS	95
EXPERIMENT 48 – WHAT IS THE STRUCTURE OF A FREE-LIVING FLATWORM?	98
EXPERIMENT 49 – WHAT IS THE STRUCTURE OF AN EARTHWORM?	100
EXPERIMENT 50 – WHAT IS THE STRUCTURE OF AN INSECT (LOCUST)?	

The Ministry of Education wishes to acknowledge the work of the consultations on selecting the Microscience Experiments for Biology, Chemistry and Physics which are relevant to the national curriculum.

Participants

Name	Institution
Mr. Gregory Blyden	Faculty of Natural Sciences - University of Guyana
Mr. Mohandatt Goolsarran	Ministry of Education - NCERD
Mr. Navindra Hardyal	Queens College
Mr. Sirpaul Jaikishun	Faculty of Natural Sciences - University of Guyana
Ms. Petal Jetoo	Ministry of Education - NCERD
Ms. Noella Joseph	Cyril Potter College of Education
Ms. Samantha Joseph	Faculty of Natural Sciences - University of Guyana
Mr. Azad Khan	School of Education and Humanities - University of Guyana
Mr. Patrick Ketwaru	Faculty of Natural Sciences - University of Guyana
Professor Lloyd Kunar	Physics Department - University of Guyana
Mr. Marvin Lee	Queens College
Mr. Andrew Mancey	School of the Nations
Mr. Gary Mendonca	Faculty of Natural Sciences – University of Guyana
M. Kamini Ramrattan Richard Ishmael Secondary School	
Ms. Wendel Roberts	Ministry of Education – NCERD
Ms. Medeba Uzzi	Faculty of Natural Sciences – University of Guyana

A Message from the Minister of Education

'The steady decline of enrolment of young people in science is cause for concern, and it is in this endeavour that UNESCO's work in Science Education aims to make a difference. In a world that is increasingly shaped by science and technology, the team recognizes this and has made it its mission to not only spread education but to make an interest in the Sciences a prominent and lasting feature wherever it is offered'.(UNESCO, 2011). One approach used by UNESCO is its **Global Micro-science Experiments Project** which provides developed and developing countries alike with new teaching tools. This Global Micro-science Experiments Project is a hands-on science education project that gives primary and secondary school students as well as university students the opportunity to conduct practical work in physics, chemistry and biology, using kits that come with booklets. The project thus contributes to capacity building, in areas where limited/no laboratory facilities are available. The experimental techniques that can be covered on a micro-scale include everything from separating the components of mixtures to measuring rates of reactions between chemicals.

The Ministry of Education, Guyana collaborated with UNESCO to initiate the Global Microscience Experiments project as a pilot for fifteen secondary schools in 2012. Ninety-five percent (95%) of secondary schools are now equipped with the micro-science kits and supporting manuals. This project was embraced to support the Ministry's drive to improve enrolment in the single sciences. A twenty percent (20%) increase in student enrolment was recorded since the introduction of this programme. We remain committed to transforming Guyana through Science and Technology in Education.

Guyana now leads UNESCO's Global Microscience Experiments Project in the Caribbean and is willing to partner CXC territories in providing assistance.

It is my sincere hope that this manual will be used to encourage interactive learning which fosters the development of critical thinking skills by students.

Hon. Dr. Priya D. Manickchand Minister of Education Guyana April 2015

Introduction to the first Guyana version adaptation of UNESCO teaching and learning materials on micro science experiments

The contents of this document recommended the participants of are by UNESCO/Kingston/Ministry of Education, NCERD consultations on Micro-Science Experiments held in Georgetown (Guyana) on 27-30 June, 2011. The present materials correspond fully to the existing National Curriculum for teaching basic sciences at the different levels. The materials were selected by the participants of the working consultations. The participants worked with teaching and learning packages on microscience experiments which are available on UNESCO's website and are free for all types of adaptations and modifications. The different types of microscience kits donated by UNESCO/Kingston Office to Guyana can be used in practical classes. The experiments are classified according to grades and some were given first priority (refer to appendix 1). The 'priority one' experiments are recommended for the pilot of the microscience experiments. It is very clear that, new experiments can be developed and tested using the same kit, as proposed by the participants of the working consultations which included curriculum development specialists. Developing new materials can be recommended, as a second stage of the project development. It is noted that the microscience experiments, as a new methodology for hands on laboratory work by students, can work in conjunction with macroscience experiments. Furthermore the microscience kits can be used by teachers for demonstration purposes. We hope, that the Science Teachers in Guyana will find the microscience experiments methodology and teaching and learning materials, interesting and of great value for the enhancement of science education.

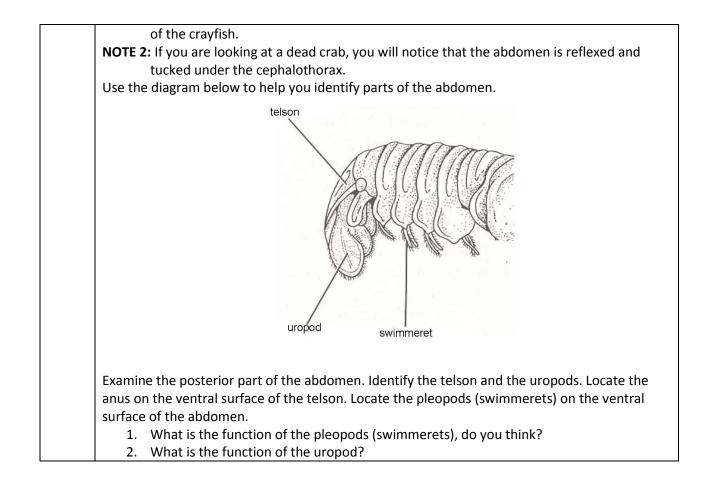
Participants of the working consultations

May 2012

EXPERIMENT 1 - WHAT MOULDS WILL GROW ON BREAD?

CSEC OBJECTIVE: Section A 3.6

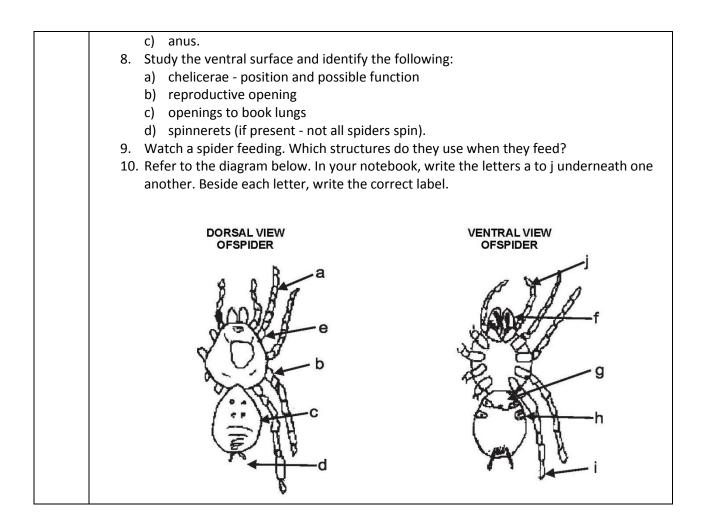
	RMATION
	n bread becomes mouldy it is being consumed by saprotrophs. These are organisms that off dead or decaying matter, including dead animals and plants. Many fungi, moulds, and
bacte	ria are saprotrophs.
Sapro	trophs play a very important role in any ecosystem - including the ecosystem in our own
home	es. The chemical components of dead organisms are recycled and therefore can be reused
by pla	ants and animals.
You N	leed
•	Plastic lunch box with lid
•	Forceps
•	Hand lens
•	Old, stale bread or cake which is not too dry
•	Paper towel
What	to do
Stage	1 Colonies of Moulds
The f	ollowing preparation must be carried out at least one week before the observation stage
	e investigation.
	 Work in groups so that each group uses a different piece of bread or cake. Note the manufacturer or baker, date of purchase or baking, and any other information; for example whether the bread is brown, wholewheat, white or rye - and so on. Sprinkle a few drops of water on the food and place it in the lunch box with the lid on as shown below.
	lunch box with lid
	bread or cake
3	
4	
•	how much of the bread is covered in mould (see below)
•	how many different types of mould are present
	what colours the moulds are.
5	. Draw a plan of your bread using squared paper. Indicate the colonies of mould


present, what colours they are and what areas they occupy. Use the example below to							
help you							
Count the total number of squares covered by the bread and record your finding. Count the total number of squares covered by each type of fungus and record your finding. Now calculate the percentage of bread surface covered by each type of fungus. Example calculation:							
	ares covered by brea	d = 50					
Number of squa % bread covere	ares covered by mou d by mould	ld = 18 = 18/50 x 10 = 36 %	00				
table like the or Example	ne below:		abulate the combined results in a				
Type of Substrate	Age of Substrate	% Coverage	Number of Different Colonies				
brown bread	3 days	50%	3				
chocolate cake	1 week	80%	1				
QUESTIONS							
you will have to analyse questions.	the information in y	our table in ord	er to answer some of these				
•	nould did you identif	y most frequent	ly?				
-			nmon on any of the substrates?				
3. What is happening to the bread or cake as the mould gets bigger?							
Stage 2 Detailed Study of Bread Mould (Mucor / Rhizopus) What to do							
	nould which looks lik	ke the example §	given below. Use a hand lens to				
		es. (If a light mic	croscope is available, you can also				
use this to observe the	parts mentioned.)						
	£						
		- M					
EXTENSION ACTIVITY							

	 Leave the mould with its substrate in the lunch box with the lid on. Examine the contents of the lunch box every day for the following two weeks. Record all your findings. Pay careful attention to the increase or decrease in the size of any of the colonies. Use the squared paper method to help you obtain more accurate results.
Stag	e 3 Examining a section of fungal mycelium - Optional Activity
You	Need
	Light microscope
	Dissecting needle
	 A few of the fungal threads which you grew in your comboplate
	Glass slide
	Coverslip
	Propette
	Water
	White paper
Wha	at to do
	 Make a temporary microscope slide*.
	Place the slide under the lens of the light microscope and focus.
	Identify fungal threads (hyphae), sporangia and spores.
	Draw what you see. See the example alongside.
* As	k your teacher about preparing temporary microscope slides.

EXPERIMENT 2 - WHAT IS THE STRUCTURE OF A CRUSTACEAN?

CSEC OBJECTIVE: Section A 1.1


Ver Ne	
You Nee	
	Plastic lunch box
	Forceps
	Hand lens
	Petri dish
	Suitable crustaceans* (probably dead)
	obtained from your teacher
What to	
	e the prawn or other crustacean and answer the questions which follow. Use a text to
	the meanings of words which you do not know.
	ral characteristics
1.	Feel the outer covering of the specimen. Why do you suppose the organisms in this group are called crustaceans?
2.	Of what substances is the outer covering composed?
	Into how many parts is the body divided?
	Is the body clearly segmented?
	crayfish
B The C	ephalothorax
Examine	e the mouth and its appendages. These structures are all used in feeding.
1.	How many antennae are there? Compare the antennae with respect to length and structure.
2.	How many eyes are there? Are they sunken at the surface?
	What is the carapace? What is its purpose?
4.	Examine the walking limbs. How many are there? To what part of the body are they
	attached?
5.	Are any of the limbs modified in any way? Explain.
6.	Why is it important that the gills are attached to the walking legs?
C The A	bdomen
NOTE 1	This part of the crayfish is sometimes called the "tail". It is not a tail like the tail of a
	vertebrate. If people buy crayfish tails in a shop, they are actually buying the abdomen

EXPERIMENT 3 -WHAT IS THE STRUCTURE OF A SPIDER?

CSEC OBJECTIVE: Section A 1.1

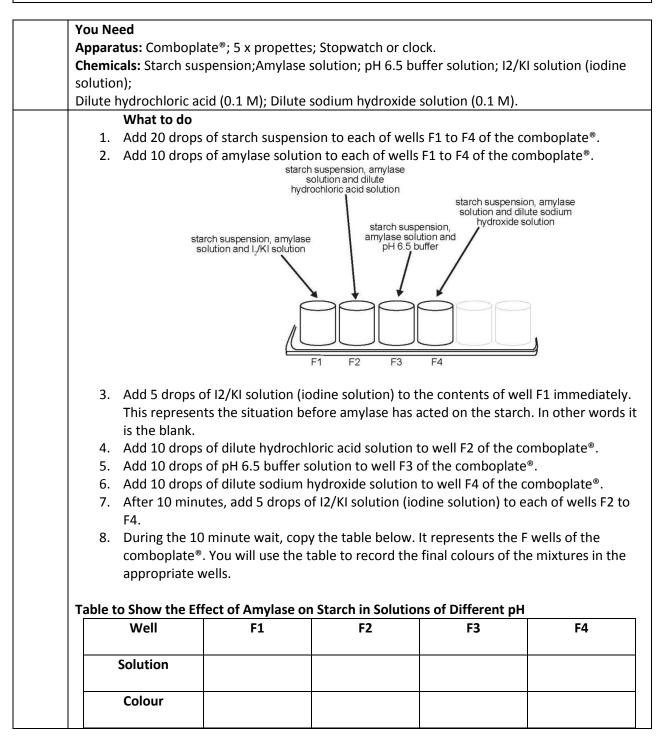
INFORMATION
Spiders, like insects, crustaceans and myriapods are arthropods. In this activity you will examine one or more spiders and find out in what ways they are similar and different from
other arthropods.
Observe the spiders and their behaviour. DO NOT ANNOY THEM. DO NOT TOUCH THEM.
 You Need
Hand lens
 Glass container**
 Spider or spiders**
Water
Twig
** Your teacher will explain what to do so that you can best observe the spiders.
Answer the questions to the best of your ability. DO NOT interfere with the spiders.
 What to do
Observe the spiders and answer the questions which follow. Use a text to find out the
meanings of words which you do not know.
spider
QUESTIONS
1. What is the outer covering called?
2. Describe the substance forming the outer covering.
3. Into how many parts is the true body divided?
4. Is the body clearly segmented?
5. How many walking appendages are there?
6. From which body part do they arise?
7. Study the dorsal surface of the spider and locate the following structures:
a) eyes - how many there are and their position
b) pedipalps - their position and possible function

EXPERIMENT 4 – THE ACTION OF AMYLASE ON STARCH

CSEC OBJECTIVE: Section B 2.9

You Need					
Apparatus: Comboplate [®] ; 2 x propettes; Plastic lunch box; Thermometer.					
Chemicals: Starch suspension; Amylase solution; 12 /KI solution (iodine solution);					
pH 6.5 buffer solution; Hot water; Tap water at room temperature.					
Use the plastic lunch box as a water bath in the following way:					
 Pour a little tap water at room temperature into the container. 					
 Slowly add hot water, stirring occasionally until a temperature of between 30 oC and 40 oC is reached. 					
What to do					
1. Add 20 drops of starch suspension to each of wells F1 and F2 of the comboplate [®] .					
2. Add 10 drops of amylase solution to well F1 and 10 drops of buffer solution to well F2					
of the comboplate [®] . See the figure below.					
10 drops amylase solution 10 drops buffer 0 solution F1 F2					
3. Float the comboplate [®] on a water bath at between 30 oC and 40 oC for 10 minutes.					
CARE DO NOT LET WATER FROM THE WATER BATH ENTER ANY OF THE COMBOPLATE® WELLS					
4. After 10 minutes add 5 drops of I2 /KI solution (iodine solution) to each of wells F1 an					
F2.					
5. Observe any changes.					
QUESTIONS					
1. What is the colour of the I2 /KI solution (iodine solution)?					
2. What happens when we add iodine solution to starch suspension or to a food which					

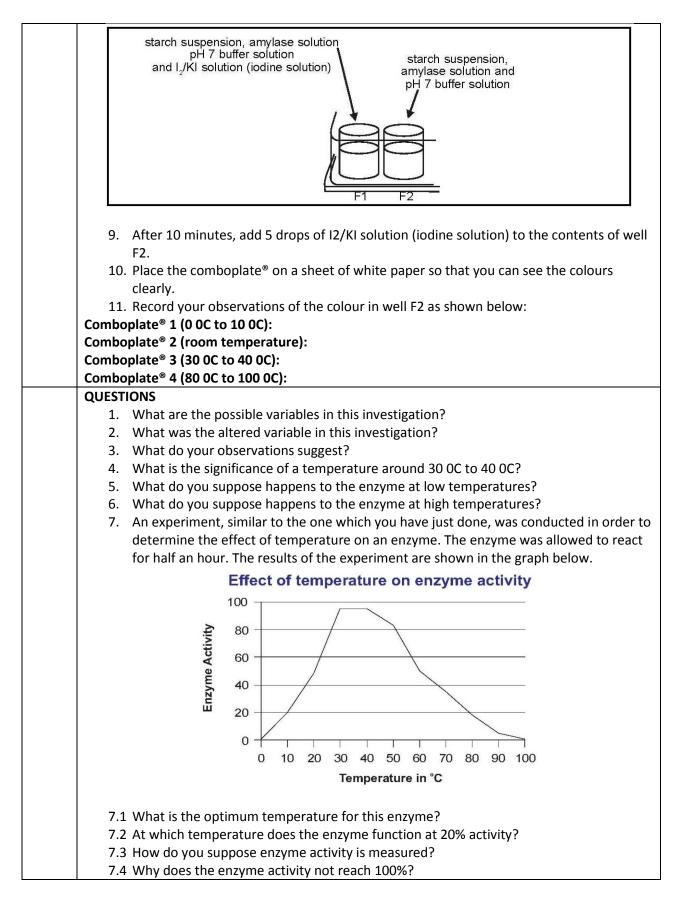
contains starch?
3. What is the colour of the mixture in well F2 after iodine solution has been added?
4. What does this observation suggest?
5. What is the colour of the solution in well F1 after iodine solution has been added?
6. What does this observation suggest?
7. What substance did well F1 have which well F2 did not have?
8. What did the amylase do?
9. Where do we find amylase in ourselves?
10. Amylase is an enzyme. What sort of enzyme is it?


EXPERIMENT 5 – THE ACTION OF AMYLASE ON STARCH OVER A PERIOD OF TIME CSEC OBJECTIVE: Section B 2.8

solution).	: Starch suspensi	· · ·				`
What to d						
	d d 20 drops of sta	arch suspension	to each of w	alls E1 to E6 o	f the combor	Nata®
	ld 10 drops of an	-				
	e comboplate [®] .	lylase solution		of burlet to e	acti of wells i	1 10
	ld 5 drops of I2/k	(I solution (iodi	ne solution) to	the content	s of well F1 in	nmec
	is well represent	-	-			
	ords it shows the		•			
4. Sta	art measuring the	e time from zer	o time.			
5. Or	ne minute from z	ero time, add 5	drops of I2 /k	(I solution (io	dine solution) to t
CO	ntents of well F2					
6. Tv	o minutes from	zero time, add	5 drops of I2 /	/KI solution (i	odine solutio	n) to
	ntents of well F3	-				
	ur minutes from		5 drops of I2 ,	/KI solution (i	odine solutio	n) to
	ntents of well F4					
-	ght minutes from		5 drops of I2	/KI solution (iodine solutic	on) to
	ntents of well F5				/· ·· · ·	
	teen minutes fro ntents of well F6		ad 5 arops of	12/KI solution	i (lodine solut	lon)
	ait for 5 minutes					
	During this time		bolow It ron	roconts the E	wells of the	comb
	u will use the tak		-			
	ells.					лорі
Table to S	how the Effect o	f Amylase on S	tarch over a P	eriod of Time	2	
_		-				
Wel	l F1	F2	F3	F4	F5	
	ir 🛛					
Colou						
Colou						
	ace the combopla	ata® on a choot	of white pape	ar so that you	can see the	

QUES	QUESTIONS					
1	What was the substrate in this investigation?					
2	What was the enzyme in this investigation?					
3	What do you think the end-products of the reaction are?					
4	What do your observations suggest?					
5	Amylase acts in the mouth which has a pH around 7. What do you suppose happens when the food and enzyme is swallowed into the stomach which has a pH around 2 to 3?					

EXPERIMENT 6 – THE EFFECT OF pH ON THE ACTION OF AMYLASE ON STARCH CSEC OBJECTIVE: Section B 2.9



9. Place the comboplate [®] on a sheet of white paper so that you can see the colours						
clearly.						
10. Use the table to record your observations.						
QUESTIONS						
1. What was the substrate in this investigation?						
2. What was the enzyme in this investigation?						
3. What do you think the end-products of the reaction are?						
4. What do your observations suggest?						
5. Amylase acts in the mouth which has a pH around 7. What do you suppose happens when the food and enzyme is swallowed into the stomach which has a pH around 2 to 3?						
6. Explain your answer in terms of the lock-and-key theory of enzyme activity.						

EXPERIMENT 7 – THE EFFECT OF TEMPERATURE ON THE ACTION OF AMYLASE ON STARCH

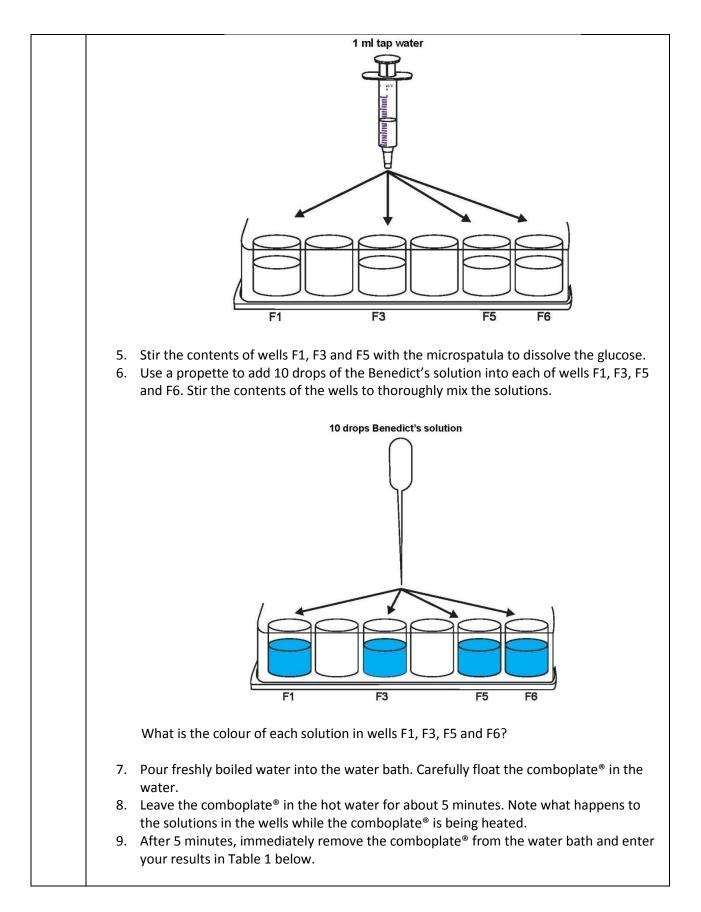
CSEC OBJECTIVE: Section B 2.9

You Need					
Apparatus: 4 x comboplate [®] s; 5 x propettes; *4 x plastic lunch boxes; 4 thermometers;					
Stopwatch or clock.					
Chemicals: Starch suspension; Amylase solution; pH 6.5 buffer solution; I2/KI solution (iodine					
solution);					
Ice; Hot water.					
*Use the plastic lunch boxes as water baths in the following way:					
Between 0 0C and 10 0C					
• Pour a little tap water at room temperature into one of the lunch boxes.					
• Slowly add ice, stirring occasionally until a temperature of between 0 0C and 10 0C is reached.					
 Between 30 0C and 40 0C					
Similarly, using another plastic lunch box,					
Pour a little tap water at room temperature into one of the lunch boxes.					
• Slowly add hot water, stirring occasionally until a temperature of between 30 0C and					
40 0C is reached.					
Between 80 0C and 100 0C					
Repeat the procedure using another plastic lunch box and more hot water, in order to obtain a					
temperature between 80 0C and 100 0C.					
Room Temperature					
Use plain tap water for the water bath at room temperature.					
Keep checking the temperatures of the water in the water baths. Add either hot or cold water					
as necessary in order to maintain the correct temperature range.					
What to do					
Four comboplate [®] s as well as four water baths are needed. We suggest you work in four					
groups, each group taking responsibility for a different temperature set-up.					
1. Place the first comboplate [®] in a 0 0C to10 0C water bath (i.e. in a water bath of icy or					
very cold water).					
2. Place the second comboplate [®] in a water bath at room temperature.					
3. Place the third comboplate [®] in a 30 0C to 40 0C water bath.					
4. Place the fourth comboplate [®] in a 80 0C to 100 0C water bath (i.e. in a water bath with					
very hot water).					
Follow steps 5 to 10 for each of the four comboplate [®] s					
5. Add 20 drops of starch suspension to each of wells F1 and F2.					
6. Add 10 drops of pH 7 buffer solution to each of wells F1 and F2.					
7. Add 10 drops amylase solution to each of wells F1 and F2.					
8. Add 5 drops of I2/KI solution (iodine solution) to the contents of well F1 immediately.					
This reaction represents the situation before amylase has reacted with the starch.					
Each comboplate [®] should look like the situation pictured below.					

EXPERIMENT 8 – THE ACTION OF THE ENZYME CATALASE ON HYDROGEN PEROXIDE CSEC OBJECTIVE: Section B 2.8 – 2.9

r								
_	INFORMATION Nearly all living tissue contains an enzyme called <i>catalase</i> . This enzyme speeds up the							
	decomposition of hydrogen peroxide into water and oxygen. Oxygen is a gas which bubbles							
	through the solution as it is being produced. The more catalase present, the more quickly the oxygen is produced and therefore the more bubbly or fizzy the solution appears.							
	You Need Apparatus: 1 x comboplate [®] ; 1 x 2 ml syringe; Small knife* (not in kit).							
	Chemicals: 12 ml hydrogen peroxide ** (provided by your teacher); Pieces of living tissue (carrot, onion, apple, liver, meat, potato etc).							
What								
1.	Cut small pi	eces of the tissue, about t	he size of a pea, and place or	ne piece of each type				
	into wells F							
	•		tissue in a table like the one					
3.	•	nge to add 2 ml of the hyd	lrogen peroxide solution to e	each of the wells with				
	the tissue.							
4.	Observe any	<pre>/ changes.</pre>						
				-				
		Tissue	Effect					
5.	Decide which tissue has the greatest effect on the hydrogen peroxide and which tissue has the least effect.							
6.	6. In the table, write the word "greatest" next to the tissue which had the greatest effect							
	and the wor	d "least" next to the tissu	e which had the least effect.					
F	Rinse the comboplate [®] (not down the drain - use a waste bucket) and shake it dry.							
			QUESTIONS					
	TIONS							
1.	T IONS What is the	effect of the enzyme cata	lase on hydrogen peroxide?					
1. 2.	TIONS What is the Suggest and		e catalase.					

EXPERIMENT 9 – WHAT IS THE EFFECT OF THE ENZYME RENNIN ON MILK? CSEC OBJECTIVE: Section B 2.8


You Ne	eed							
Apparatus: 1 x comboplate [®] ; 1 x 2 ml syringe; propettes; Lunch box.								
Chemicals: Fresh full cream milk; Enzyme rennin solution; Warm water.								
What to do								
	1. Using the syringe, add 1,5 ml milk to each of wells F1 and F2.							
	Using a propette, add 10 drops of water to the contents of well F1.							
	Using a clean propette, add 10 drops of rennin solution to the contents of well F2.							
4.	Float the comboplate on warm water in the lunch box as for some of the previous							
	activities.							
	5 Observe any changes.							
QUEST								
	What is the effect of the enzyme rennin on milk?							
2.	We can say that rennin curdles or coagulates milk. It converts a soluble protein to an insoluble protein.							
	Specifically, it converts caseinogen to casein. In other words, casein is not soluble in							
	water. That is why the curdled mixture looks lumpy. In your notebook, draw a diagram							
	of what you think curdled milk would look like if we could see it under high							
	magnification.							
	1							
	Rennin acts on milk and milk products before other proteolytic enzymes act on these							
	substrates.							
	Rennin actually prepares milk for further digestion by other enzymes.							
3.	The young of mammals produce the enzyme rennin in far higher quantities than adults							
	do. Try to suggest a reason WHY baby mammals produce more rennin than adults do.							
4.	How have we used our knowledge of rennin in industry?							

EXPERIMENT 10 – BENEDICTS TEST FOR REDUCING SUGAR

CSEC OBJECTIVE: Section B 2.7

Grade Level – 9&10

Introduction:					
All monosaccharides, and some disaccharides, have the ability to reduce copper(II) to c in alkaline solution. These sugars are referred to as reducing sugars. During the reduction sugars are oxidised to their corresponding acids. Benedict's solution contains copper(II) sulphate in an alkaline medium. Positive tests for a reducing sugar with this solution are					
indicated by a series of colour changes as the copper(II) sulphate is reduced to copper(I) oxide. The purpose of this investigation is to establish what the colour changes are that indicate the					
presence of reducing sugars.					
You Need					
Apparatus: Comboplate [®] ; 1 x plastic microspatula; 1 x thin stemmed propette; 1 x 2 ml syringe *1 x water bath maintained at boiling temperature.					
Chemicals: Glucose/dextrose powder (C6H12O6(s)); Benedict's solution; Tap water; Boiling					
water.					
* Make a boiling water bath in the following way.					
Fill a plastic container (such as a large bowl or your lunch box or an empty, 2 litre ice cream					
container) with boiling water from a kettle or cooking pot. It is best if each learner has their					
own water bath. If large containers are used, more than one learner can use them together,					
provided that the bath does not become too crowded with comboplates® so that they topple					
over when the container is replenished with boiling water.					
What to do					
1. Using the spoon of the plastic microspatula, place four level spatulas of					
glucose/dextrose powder into well F1.					
2. Similarly, place two level spatulas of the glucose/dextrose powder into well F3.					
3. Turn the spatula around and using the narrow end, place one level spatula of the					
glucose/dextrose powder into well F5.					
GLUCOSE					
4x $2x$ $1x$					
F1 F2 F3 F4 F5 F6					
4. Use the 2 ml syringe to dispense 1.0 ml of tap water into each of wells F1, F3, F5 and F6.					

	WELL	COLOUR CHANGE OBSERVED DURING HEATING	FINAL COLOUR OF SOLUTION AFTER 5 MINUTES	
				_
		Rinse the comboplate [®] , syring	e and propettes with water.	
QUEST Q1. the glu		the colour of the Benedict's solution ions?	n change when it was heated with	each of
Q2. Q3. Q4.	Which w What do Which w	ell contained the highest concentra you notice about the colour change ell contained the lowest concentrat	es observed in well F1? ion of glucose? Explain.	
	From you tration of	you notice about the colour change ir answers to questions 3 and 5, dec reducing sugar present in a sample ithin a specified time period.	duce the relationship between the	
Q7. Q8.	Why did How can	the colour of the solution in well F6 one test for the presence of reduci	-	
(These Q9. Q10. Q11.	What wa Write do When glu	STIONS are aimed at students who also hav s the purpose of testing water with wn the ionic equation for the reduc ucose is oxidised, gluconic acid is for I think is responsible for the reducti	the Benedict's solution? tion of copper sulphate to copper med. (See below.) Which function	
		H C==0	он С — о	
		н—с²—он он—с²—н →	Н—С́—ОН ОН—С³—Н 	
		н—с́—он н—с́—он	н—с́'—он ∣ н—ç°—он	
		l₅ C H₂OH glucose	H—Ċ⁵—OH │ C [€] H₂OH gluconic acid	
Q12.	Give a re	ason for your answer to question 5.		